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The motion of a heavy sphere sedimenting through a dilute background suspension 
of neutrally buoyant spheres is analysed for small Reynolds number and large PBclet 
number. For this particular problem, it is possible not only to calculate the mean 
velocity of the heavy particle, but also the variance of the velocity and the coefficient 
of hydrodynamic diffusivity . Pairwise, hydrodynamic interactions between the 
heavy sphere and the background sphere are considered exactly using volume 
integrals and a trajectory analysis. Explicit formulae are given for the two limiting 
cases when the radius of the heavy sphere is much greater and much less than that 
of the background spheres, and numerical results are given for moderate size ratios. 
The mean velocity is relatively insensitive to  the ratio of the radius of the 
background spheres to  that of the heavy sphere, unless this ratio is very large, 
whereas the hydrodynamic diffusivity increases rapidly as the radius ratio is 
increased. The predictions are in reasonable agreement with the results of falling-ball 
rheome try experiments. 

1. Introduction 
In the last two decades, considerable progress has been made in the calculation of 

mean settling speeds in dilute, sedimenting suspensions using renormalization 
techniques (e.g. Batchelor 1972, 1982 ; Hinch 1977 ; Feuillebois 1984). Of additional 
interest is the possibility of predicting the velocity variance and the coefficient of 
hydrodynamic diffusivity, which are measures of the fluctuations in the settling 
speeds of individual sedimenting particles. Hydrodynamic diffusion during batch 
sedimentation of nearly monodisperse suspensions has been observed experimentally 
by Davis & Hassen (1988), who measured the rate of spreading of the interface a t  the 
top of the suspension, and by Ham & Homsy (1988), who measured the variance in 
the time for a marked sphere in the interior of the suspension to  fall through a given 
distance. It should be emphasized that the phenomenon of hydrodynamic diffusion 
arises from hydrodynamic interactions between particles in the suspension fluid, and 
is unrelated to Brownian diffusion which arises from the thermal motion of the fluid 
molecules surrounding each particle. 

Previous theoretical studies of velocity fluctuations during the sedimentation of 
dilute, monodisperse suspensions include that of Caflisch & Luke (1985), who showed 
that an infinite velocity variance is predicted if the particles are randomly 
distributed in a suspension of infinite extent, and that of Koch & Shaqfeh (1991), who 
showed that this divergence due to  long-range particle-particle interactions is 
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removed by a Debye-like screening mechanism which arises from three-sphere 
interactions causing a deficit of neighbouring particles in the vicinity of each particle. 
Shaqfeh & Koch (1988, 1990) have also analysed related problems involving 
orientational dispersion of non-spherical particles due to hydrodynamic interactions 
in flows of dilute suspensions. 

In this paper, we consider the model problem of a single heavy sphere falling 
through a dilute, monodisperse suspension of neutrally buoyant spheres. This theory 
is directly applicable to experiments on falling-ball rheometry, in which considerable 
variations in the velocity of the heavy sphere have been observed (Mondy, Graham 
& Jensen 1986; Milliken et al. 1989). The significance of employing a neutrally 
buoyant suspension is that, in an unbounded fluid, the disturbance to the velocity 
field of the heavy sphere, caused by a single neutrally buoyant particle, decays like 
r-4 as the distance between their centres, r ,  tends to  infinity. It is thus possible, in 
a dilute suspension, to replace ensemble averages which occur in the description of 
the hydrodynamic diffusivity by volume integrals over pairs of particles, without the 
need for complicated renormalization. Moreover, when two interacting spheres differ 
in size or density, they experience a relative velocity which varies as their relative 
position changes. I n  contrast, two identical spheres fall with no relative velocity, and 
consequently the hydrodynamic diffusivity in a monodisperse suspension cannot be 
calculated solely from pairwise interactions. 

The paper is organized as follows. In $2 the general problem is formulated, using 
both a volume integral approach and a trajectory approach for averaging over 
pairwise interactions. Expressions for the mean velocity, the velocity variance, and 
the coefficient of hydrodynamic diffusion for the heavy sphere are presented. In  order 
to make further analytical progress, the special cases when the radius of the heavy 
sphere is very large or small relative to  that of the background spheres are addressed 
in $3. These limits bear some relation to the effective tracer diffusivity of molecules 
or very small particles flowing through a fixed bed (Koch & Brady 1985), and 
similarities and differences of the two problems are discussed. Numerical results for 
general radius ratios are also presented in $3, and the predictions are compared with 
data from falling-ball rheometry experiments in $4. Brief conclusions are drawn in 
the final section. 

2. Formulation of the general problem 
We consider a suspension of neutrally buoyant spheres of radius a, immersed in an 

incompressible Newtonian fluid of viscosity ,u and density p. If the total surface area 
of the particles is much greater than the surface area of the walls of the container 
(Happel & Brenner 1973, $8.2), and provided that the heavy sphere of radius a, is 
well away from the walls, we are justified in approximating the suspension as 
unbounded. We shall also assume that it is ‘well-mixed’, i.e. the distribution of the 
background spheres is random and the probability distribution function for the 
position of the spheres’ centres is statistically homogeneous over macroscopic 
lengthscales, i.e. lengthscales much greater than the typical distances separating the 
spheres. The volume fraction, c, of the neutrally buoyant background spheres is small 
(c  6 i),  but sufficiently large that hydrodynamic interactions between individual 
background spheres and the heavy sphere are important. The Reynolds number for 
the motion of particles, Re = pU,a,/,u, is small, so that inertial effects can be 
neglected. We also assume that the Pdclet number, Pe z a, U,/D,, is large, so that 
Brownian diffusion is weak. Here, U, is the Stokes velocity of the heavy sphere and 
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FIQURE 1.  Schematic of heavy sphere and nearby background sphere. 

D, is the relative Brownian diffusivity of the two spheres. Interparticle attractive 
and repulsive forces are assumed negligible, and the surfaces of the spheres are 
considered to be ideally smooth, with the surrounding fluid treated as a continuum 
obeying the no-slip condition. 

As the heavy sphere falls due to gravity, it encounters background spheres which 
slow down its motion so that the mean settling velocity of the heavy sphere is less 
than its Stokes velocity. The random encounters also cause the velocity of the heavy 
sphere to vary or fluctuate with time, giving rise to a fluctuating motion 
superimposed on its mean velocity. In 52.1 we show how the fluctuating motion may 
be analysed statistically using pairwise hydrodynamic interactions in order to 
predict the mean velocity, the velocity variance, and the coefficient of hydrodynamic 
diffusion for the heavy sphere. Before doing so, we briefly review the hydrodynamic 
interaction of a pair of spheres under creeping flow conditions. 

Figure 1 depicts an arbitrary relative location of the heavy sphere and a 
background sphere. The centre of the former is a t  xl, and it is subject to a body force 
6 due to  gravity. The second sphere is neutrally buoyant (8 = 0) ,  with its centre a t  
x, = x, + r .  Both spheres are torque free. Because the governing Stokes equations are 
linear and quasi-steady, the velocity of each sphere depends only on the 
instantaneous relative location of the two spheres, and is linear with respect to the 
applied force &. Furthermore, the motion may be decomposed into motion along and 
normal to the line of centres, so that the instantaneous translational velocities of the 
two spheres in an otherwise quiescent and unbounded fluid may be expressed as 
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where I is the unit second-order tensor and r = Irl. The mobility functions (A, , ,  A,,,  
B,,, and Blz)  are as defined by Batchelor (1982) and depend on two dimensionless 
quantities : 

2r a2 s=- - , A = - - .  
a1 +a ,  a1 

Considerable research to determine these mobility functions is summarized by 
Jeffrey & Onishi (1984) and Kim & Karrila (1991), among others. For s+m, A,, = 

1, B,, = 1, A, ,  = 0, and B,, = 0, confirming that U, = 0 and U, = V, when the 
spheres are widely separated, where V, = I;,/67cpa1 is the Stokes velocity of the heavy 
sphere. 

2.1. Volume-integral formulation 

Let H(x , , t )  be some property of the suspension associated with the heavy sphere 
centred at  x,, and let P ( x ,  + r I x,) be the probability of finding a background sphere 
at  x , + r ,  given the sphere at  x,. If H ( x , , x , + r )  is the value of H in the presence of 
just one other sphere a t  x, + r ,  and if H decays more rapidly than r-3 as r+co,  then, 
as shown by Batchelor (1972), the ensemble average of H is 

( H )  = k ( X , ,  x, + r )  P (x l  + r I x,) dr  + O(c2), (2.3) 

where the integral is over the whole volume of the suspension. In  other words, 
provided that H ( x , , x , + r )  decays more rapidly than r-3 as r+m, its ensemble 
average ( H ) ,  can be calculated to within an error of O(c2) from the volume average 
of H considering only the effects of the pairwise interaction between the sphere at x1 
and a second sphere. If H does not decay more rapidly than F3,  then the volume 
integral does not uniquely converge and a renormalizing quantity, whose average is 
known, must be found and subtracted from H so that the convergence criterion is 
met. 

Since the disturbance in the heavy sphere’s velocity, U,, from its Stokes velocity, 
V,, due to the presence of a single neutrally buoyant sphere decays as F4, the 
renormalization quantity for the mean velocity is simply V, : 

where n, = 3c/47cai is the number density of background spheres and p,, is the pair 
distribution function defined such that nzp,,(r) = P ( x l  + r 1 x,). In this and 
subsequent formulae, the angle brackets represent the ensemble average over all 
possible realizations of the random initial positions of the background spheres, taken 
after the heavy sphere has fallen a sufficient distance to undergo many encounters 
and establish the long-time form of the pair distribution function. 

The velocity variance tensor, V,, is defined as the mean-square velocity variation 
of the heavy sphere from its mean velocity: 

v, = ( (U,-(U,>)(v,-<u,>)> = (U, v,>-(U,>(V,>. (2.5) 

Renormalization requires that (V,) be replaced by V,-O(c), so that for dilute 
suspensions the variance is given by 

(2.6) 
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The hydrodynamic diffusivity tensor is defined as the ensemble average of the 
long-time correlation function for the velocity disturbance of the heavy sphere : 

Using integration by parts, it may be shown that this formulation is equivalent to 

where x1 is the position of the centre of the heavy sphere after time t. For dilute 
suspensions, renormalization again requires that ( V,) be replaced by V, - O(c), so 
that (2.7) becomes 

The pair-distribution function, p12(r), satisfies the Fokker-Planck equation (Bat- 
chelor 1982), 

-+V.(p,, 8Pl2 v,,, = 0, (2.10) 
at 

subject to the homogeneous boundary condition of p,, = 1 as r+co.  The relative 
velocity of the background sphere with respect to the heavy sphere is, using (2.1) and 
(2.21, 

- V, ,G dr 
dt 
_ -  (2.11) 

where the mobility functions for relative motion along and normal to the line of 
centres are, respectively, 

L =A1,-2A1,/(1+h),  M =  B1,-2B1,/(1+h). 

2.2. Trajectory formulation 

Although the pair-distribution function required in the volume-integral formulation 
may be determined using (2.10) and (2.11), in many cases it proves convenient to 
eliminate it by performing the integrals along trajectories which start with the 
spheres widely separated, where p,, = 1. To do so, we choose the volume element to 
be oriented along a relative trajectory, as shown in figure 1, so that dr = yd$dhdg, 
where h is the coordinate along the arc of the trajectory, g is the coordinate 
perpendicular to the trajectory in the plane of motion, q5 is the meridional angle 
about the axis of symmetry, y = rsin 0 is the horizontal separation of the 
spheres’ centres, and 0 is the angle between r and 4. Noting that dh = V,, dt, where 
V,, = I v,], (2.4) becomes 

< v,> = V, + n, r (am J;m (v, - v,) P,, V,, dt Y dg d$ + O ( C Z ) .  

Moreover, the flux of particle pairs along each trajectory, n,p,, V,, ydgdq5, is 
constant and equal to its value at  large separations, n, U, y, dy, d$, and so this 
becomes 

(2.12) 
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where the impact parameter, ym, is the horizontal separation of the centres of the two 
spheres when they are far apart. In a similar fashion, it may be shown that (2.6) and 
(2.9) are equivalent, respectively, to 

v, = n 2 q o  Jo J-m(LTL-o(q-LC)dl~md~md~+O(cz),  
271 m m 

(2.13) 

n m m  m 

D, =+,q Jo J-,(q-V,)dlJ -m (v,-v,)dty,dymd~+O(C2).  (2.14) 

In  deriving (2.14), integration by parts was used. 
The trajectory expressions have simple physical interpretations. The mean 

velocity disturbance of the heavy sphere is shown by (2.12) to equal the rate of 
encounters with background spheres multiplied by the mean displacement 
experienced per encounter. Similarly, the hydrodynamic diffusivity of the heavy 
sphere is shown by (2.14) to equal to one-half the rate of encounters with background 
spheres multiplied by the mean-square displacement per encounter. For dilute 
suspensions in which the encounters are uncorrelated, this is equal to the ensemble 
average of one-half the time rate of change of the net mean-square displacement after 
many encounters, which is equivalent to the common definition of a diffusion 
coefficient given by (2.8). 

A trajectory analysis has also been used recently by Acrivos et al. (1992) to predict 
the component of the hydrodynamic diffusivity in the flow direction for a dilute 
suspension of neutrally buoyant particles subject to simple shear flow. They found 
that the dominant contribution comes from trajectories with small impact 
parameters. 

3. Results and discussion 
The calculations may be simplified considerably by taking advantage of symmetry. 

As noted previously, the motion of the two interacting spheres is axisymmetric, so 
that their centres remain in a vertical plane. This implies that the mean velocity of 
the heavy sphere is in the vertical direction, and that the off-diagonal components 
of the velocity variance and hydrodynamic diffusivity tensors are zero. Moreover, the 
linearity of the governing Stokes equations implies that the motion also has mirror- 
image symmetry about the horizontal plane in which the vector r lies when 0 = @. 
This latter symmetry will be broken if the spheres come into contact, owing to 
surface roughness, adhesive forces, molecular slip or other effects, as discussed later. 
In  the absence of contact, these symmetries lead to the pair-distribution function 
having spherical symmetry (Batchelor 1982) : 

with p,, = 0 for s < 2 since the spheres are not able to overlap. 

variance and hydrodynamic diffusivity of the heavy sphere as, respectively, 
The mirror-image symmetry also allows us to express the mean velocity, velocity 

(v,) = v,( 1 - k, c) + O(C2) ,  

v, = v, v , k , c + ( q / - q  V , )k , c+O(c2) ,  

D, = V,V, 2 k ,c+O(c2) .  (3 
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The coefficients in (3.2)-(3.4) may be calculated by either the volume integral or 
trajectory approach. Using (2.1) for the required disturbance velocity of the heavy 
sphere, together with c = !nuin,, yields the following expressions for the mean 
velocity coefficient (km), the horizontal velocity variance coefficient (kh), the vertical 
velocity variance coefficient (k,) and the hydrodynamic diffusivity coefficient ( kd), 
respectively, from the volume-integral approach : 

[(Il l ,-A,,)  cos2 8+(1-Bl,)]p,,s2 sin OdOds, (3.8) 
where 7 = 2Qt/(a, +a,), with 7 = 0 referring to the time a t  which the centres of both 
spheres are in the horizontal plane of symmetry. The derivation of (3.8) from (2.9) 
requires the use of mirror-image symmetry about 8 = in in order to replace the upper 
limit of the trajectory integral with 7 = 0. Also, the terms in the curly brackets must 
be evaluated using (2.11) along the trajectory passing through the point (s, 8). 

The corresponding expressions for the dimensionless coefficients from the 
trajectory approach are 

kh = { (B,, -A,,), cos2 8 sin2 8 d7a da,  (3.10) 

{(Bll-A,,) COS’ 8+ (1 -Bll)} d7),rda,  (3.12) 
3( l+h)4  a, 

k d =  16h3 la, 
where a = 2ym/(a1 +a,) is the dimensionless impact parameter and uniquely defines 
a trajectory. Equations (3.9)-(3.12) can be shown to be identical to (3.5)-(3.8), 
respectively, by making the transformation a2 = p, ,  Ls2 sin2 8 (Davis 1984). After 
noting that sp;; d(pl, L)/ds = 2(L-M) from Batchelor (1982), this gives 

p12 s2 sin 8 ds = sa da/M sin 8. 

It is also necessary to transform the trajectory integrals from 7 to 8 using the 
dimensionless components of (2.1 1) : 

ds --Lcose,  s-=MsinO, de _ -  
d7 dr  

ds -sL cot 8 - -- 
d8 M ‘  

(3.13a, b )  

(3.14) 
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3.1. Asymptotic results for A < 1 

When A 4 1, the suspension of small background spheres will reduce the mean 
velocity of the large heavy sphere from its Stokes velocity by behaving as an effective 
fluid with the Einstein viscosity correction (Batchelor 1982). The fluctuations from 
the mean velocity, as measured by the velocity variance and hydrodynamic 
diffusivity, are expected to be small. 

The relevant mobility functions for A < 1 are (Batchelor 1982; Fuentes, Kim & 
Jeffrey 1988, 1989): 

(3.15) 

(3.16) 

B,, -Al l  = 20A3( 3 ~ - ~  - 24s~' + 32s-') + O(A4), 

1 -Bl1 = 320A3 s-* + O(A4), 

L = 1 - 3s-I + 4 ~ - ~  + A(3s-l- 1 2 ~ - ~ )  + A'( - 3 ~ - ' +  2 8 ~ ~ ~ )  + O(A3), (3.17) 

M = 1 -$s-' - 2s-3 +A($-'+ 6 ~ ~ )  +A2( -isLs-'- 1 4 ~ - ~ )  +O(A3). (3.18) 

These expressions apply for all s except when the dimensionless separation, 9-2, 
becomes small with respect to A. From (3.17) and (3.18), it is seen that 
2(L-M)/s + dL/ds = O(A3). Since from (3.1) the pair-probability function remains 
uniform, p, ,  = 1 + O(A3),  i t  is most convenient to use the volume-integral formulation 
to determine the mean velocity and velocity variance of the heavy sphere. Using 
(3.15) and (3.16) in (3.5)-(3.7), and performing the integrations analytically, yields 
k, = i, k, = 1747A3/48048, and k, = 157A3/546, or 

(v,) = q ( l - ~ ) + o ( c 2 ) ,  (3.19) 

(G/- v, v , ) C + O ( C 2 ) .  v, = - A 3  q q c + -  157 1747A3 
546 48048 

(3.20) 

Evaluation of the hydrodynamic diffusivity is more difficult. We start by 
substituting (3.17) and (3.18) into (3.14) and solving for the required relationship 
between s and 8 along a trajectory defined by s sin 0 = r for 8 + 0 : 

1 
fTb 

sin 0 = 
(s-2) (s+ 1);' 

(3.21) 

where terms of O(A) and smaller have been neglected. The hydrodynamic diffusivity 
may then be determined by evaluating either (3.8) or (3.12) numerically, after using 
(3.13b) to transform the trajectory variable from 7 to  8. Unfortunately, the result is 
infinite, owing to the presence of 5 = 5-2 in the denominator of (3.21). The physical 
significance of this is that M + 0 as t+ 0, according to (3.18) with terms of O(A) and 
smaller neglected, and so the time which the small neutrally buoyant sphere spends 
in near contact with the heavy sphere approaches infinity for trajectories with 
a + O .  

Koch & Brady (1985) encountered a similar divergence in their calculation of the 
effective diffusivity of a passive tracer flowing through a fixed bed of spheres. This 
divergence is overcome by weak molecular diffusion which allows the particles to 
diffuse away from the surface of a fixed sphere, where they have a high concentration 
owing to the slow flow resulting from the no-slip condition. For the current problem, 
the divergence may be eliminated without including this boundary-layer dispersion, 
because the finite size of the neutrally buoyant sphere and the torque-free condition 
for the heavy sphere allow them to be in relative motion, even as they approach 
contact. Moreover, the problem examined by Koch & Brady (1985) concerned the 
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diffusion of small particles or molecules in the presence of much larger fixed spheres, 
and in this sense it is more relevant to the current problem in the limit A 9 1, as 
considered in the next section. Acrivos et al. (1992) also encountered a divergence in 
their calculation of the hydrodynamic diffusion component in the flow direction for 
simple shear. This divergence comes from the disturbance velocity when two 
approaching spheres on close trajectories are far apart, and it is eliminated by a third 
particle disrupting the pair. The resulting leading-order contribution to  the 
diffusivity in this case is O(c In c-'). 

By examining (3.17) and (3.18) for 6 -4 1, it is apparent that  the leading-order terms 
for the present problem dominate only when 6 + A,  and that L = O(A2) and M = O(A) 
when 6 = O(A). As a result, the hydrodynamic diffusivity includes contributions 
from three regions : an outer region where 6 = O( l) ,  an inner region where 6 = O(A), 
and a middle region where A < 6 << 1.  The inner and outer regions each make a 
contribution of O(A3) to  the diffusivity, whereas the middle region makes a 
contribution of O(A3 In X1). The last may be determined analytically by noting that 
the leading-order terms in the expansions of the mobility functions for A 4 6 < 1 are 

B,, -All  - - p 3 ,  1 -Bll - ;A3, M - $6, L - it2, sin 0 - ($)+u/&. 
Substituting these along with (3.13b) in either (3.8) or (3.12), and invoking the 
constraint A/a < 6 < a or A/a < u < a, where a is small compared to  unity but large 
compared to A, yields 

kd = F A 3 1 , a [ 2 [ 2  sin2 8'dB' sin2 

25x2 
128 

= ---A3 In A-'+O(A3), (3.22) 

The next-order terms include contributions from both the inner and outer regions, 
and must be evaluated numerically. 

The relative mobility functions given by (3.17) and (3.18) do not account for 
lubrication forces and so are not valid when the dimensionless separation, 6 = 5-2, 
becomes small compared to A. I n  this limit, the large heavy sphere appears to the 
small background sphere as a nearly flat surface. The velocity field relative to this 
surface, due to  the motion of the heavy sphere, scales as U,c in the tangential 
direction and as U,t2 in the normal direction. As a result, M is proportional to  
A/(ln(A/[)+O(l)) and L is proportional to A t .  If the gap becomes very small, 
so that ln(A/c) 9 1,  then the small sphere effectively adheres to  the surface of 
the large sphere. The flow around the large heavy sphere then creates a drag force 
of O(,ua2 U , A )  on the small neutrally buoyant sphere. This force is transmitted via 
lubrication to  the large sphere, causing the disturbance velocity to  become O(A2 Q), 
rather than O(A3U,). The drag force also causes the pair to slowly rotate, with M 
becoming O(A2) rather than O(A). Provided that A is finite, the near-contact trajectory 
integrals will therefore remain finite. Because of the logarithmic dependence of the 
transverse relative mobility function on the small gap thickness, i t  does not appear 
possible to develop analytical expressions for the contributions from the near- 
contact region. However, these contributions will be important only if the gap 
separation is allowed to become so small that 6 < O(Ae-l'A). In  the limit of A + O ,  even 
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very weak non-hydrodynamic effects (such as Brownian motion, repulsive forces, 
and surface roughness) will prevent this possibility in practice, and we then expect 
the asymptotic results given by (3.19), (3.20), and (3.22) to be valid. Numerical 
calculations to explore this issue further are given in $3.3. In the absence of non- 
hydrodynamic effects, the near-contact contributions in this limit would probably be 
eliminated by encounters with additional small background spheres, which would 
disrupt the long-time interaction of the pair and pull the small neutrally buoyant 
sphere away from the surface of the large heavy sphere. 

3.2. Results for h $ 1 

For A 9 1, a small heavy sphere falls through a suspension of large background 
spheres. Expressions for the required mobility functions (A,,,  B,,,  L ,  and M )  may be 
derived from the results of Fuentes et al. (1988, 1989), valid unless E becomes 
comparable to or smaller than h-l, and are found to be 1 +O(h-l). This implies that 
the small heavy sphere falls vertically with its Stokes velocity until it approaches, 
within a distance comparable to its own radius, the surface of a large neutrally 
buoyant sphere. It then slows down and begins to translate around the perimeter of 
the large sphere. However, it only moves a negligible distance, of O(a,), before its 
weight causes i t  to penetrate within the lubrication layer ( f  << h-'). Provided that the 
small heavy sphere starts anywhere directly above the large neutrally buoyant 
sphere (y, < a2 or u < 2), the two will come into near contact. This is in contrast to 
the case of h << 1 ,  for which the small neutrally buoyant spheres follow the 
streamlines around the large heavy sphere, and only come into near contact for 
trajectories starting very close to the axis of symmetry. 

When in near contact, the presence of the large neutrally buoyant sphere reduces 
the sedimentation velocity of the small heavy sphere to O(h-'U,) and so the 
disturbance velocity is V, - U, = - U, + O(A-' V,) ,  whereas V, - U, = O(h-' U,) when 
the spheres are not in near contact. Therefore, the dominant contributions to the 
mean velocity, velocity variance, and hydrodynamic diffusivity for h B 1 are 
expected to be provided by the near-contact portion of the relative trajectories. Since 
the magnitude of these contributions depends, in large part, on the length of time the 
spheres spend in near contact, we need to look carefully a t  the transverse relative 
mobility function, M(s) .  If h $ 1 and 6 << A- l ,  and it is assumed for the moment that 
the large neutrally buoyant sphere does not rotate, then the appropriate mobility 
function is that given by lubrication theory for a torque-free sphere sedimenting 
parallel to a flat wall (Kim & Karrila 1991): 

n 

(3.23) 

When 6 is so small that ln(hf)-' & 1,  the small sphere effectively adheres to the 
surface of the large sphere. The two then rotate as a pair, with the rotation rate 
governed by balancing the hydrodynamic torque on the large sphere from its 
rotation with that due to the weight of the small sphere attached to its surface: 

dB 3 
or M = - 

dt 4h' 
8npai - = 67c,ua, U, a2 sin 6 (3.24) 

By comparing (3.23) and (3.24), we see that M decreases significantly, from 
O(1) to O(h-'), as the dimensionless separation, 6 = s-2,  decreases from O(A-') to 
O(h-' e-"). The rate of decrease in f is governed by the mobility function for motion 
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of the small sphere toward the surface of the large sphere. From lubrication theory, 
this is L = $A[. Using this result together with (3.23) in (3.14), and then integrating 
subject to the initial condition 6 = [, a t  8 = 8, yields 

-- sin 8 - (In (h[)-1)3’A 
sin 8, In (A[,)-’ ’ 

(3.25) 

From this, we conclude that the change in sin 8 during the time required for A t  to 
decrease from 0(1) to O(e-’) is negligible, provided that A is sufficiently large for the 
condition h3/A - 1 4 1 to  be satisfied. When this is true, the small sphere adheres to the 
surface of the large sphere by lubrication forces for virtually the entire portion of the 
trajectory for which the spheres are in near contact, and so M = 3/4h. 

The trajectory analysis proves to be the most convenient for determining the mean 
velocity, velocity variance, and hydrodynamic diffusivity when A $ 1. Since the 
relative trajectories are vertical until near contact is reached, the initial azimuthal 
angle 8 at the start of the near-contact portion of the trajectory is 8, = sin-l(y,/u,). 
Using (3.24) together with V, - V, = - V,+O(h-l V,) in (2.12) for the mean velocity 
from the near-contact portion of the trajectories yields 

(V,) = V, { 1 -*r* u1a2 , lo” 2 sin 8 ym dy,} + O(c2) 

= v,( 1 - 2hc) + O(c2). (3.26) 

The velocity variance and hydrodynamic diffusivity are determined in a similar 
fashion using (2.13) and (2.14), respectively: 

v, = 2hV, V , C + O ( C 2 ) ,  (3.27) 

(3.28) 

The leading-order term for the horizontal component of the variance is only O(h-’), 
and includes contributions from both the near-contact and the widely separated 
portions of the trajectories. I n  contrast, the dominant contribution to the vertical 
component of the variance comes solely from the near-contact region. This is also 
true for the mean velocity disturbance and the hydrodynamic diffusivity. 

I n  deriving (3.26)-(3.28), the mirror-image symmetry of the trajectories about the 
plane 8 = in was invoked. As discussed previously, this symmetry will be broken if 
the spheres come into contact because of surface roughness or discrete molecular 
effects. Since the predicted separation distance, when rescaled with the radius of the 
small heavy sphere, becomes exponentially small as h is increased, it is anticipated 
that contact effects will be important in practice. One important consequence is that 
the horizontal components of the diffusivity will no longer be zero. 

Finally, (3.28) indicates that  the hydrodynamic diffusivity is very large but finite 
when h is large but finite. The large value of the diffusivity arises because a small 
sphere and a large sphere in near-contact remain together for a long time, of 
O(h2a,/U,), and the velocity disturbance is large, of O(U,). It remains finite, however, 
because the weight of the small heavy sphere causes the pair to slowly rotate, until 
they separate a t  8 = n-sin-’(y,/a,) if lubrication forces are dominant, or a t  8 = in 
if contact or repulsive forces are present to  break the symmetry. The freedom of the 
large background spheres to rotate is a significant distinction from the behaviour of 
the background spheres in a fixed bed, such as in the problem studied by Koch & 
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Brady (1985) involving hydrodynamic diffusion of a passive tracer. In  that problem, 
molecular diffusion is required, even when the PBclet number approaches infinity, in 
order to avoid a divergent result due to the tracer molecules having zero convective 
velocity as they approach the surface of the fixed spheres. In  the current problem, 
the finite size of the small heavy spheres and the freedom of the large neutrally 
buoyant sphere to  rotate allow for a finite result to be achieved in the absence of 
Brownian diffusion. Nevertheless, because the transverse relative mobility function 
M varies significantly in the lubrication boundary layer near the surface of the 
background sphere, i t  is expected that a small amount of Brownian diffusion might 
significantly reduce the hydrodynamic diffusivity, depending on the relative manner 
in which the Brownian PBclet number and the size ratio become large. 

3.3. Numerical results for h = O(1) 
Numerical calculations were made using the trajectory analysis for h = i, a, i, 1, 2,  
4 ,  and 8. The dimensionless coefficients for the mean velocity, velocity variance, and 
hydrodynamic diffusivity were calculated from (3.9)-(3.12), whereas the relative 
trajectories were calculated from (3.13), subject to the initial condition s sin 8 = (i for 
T + -  m. A second-order Euler's method was used for s < 10. The integrals were 
performed analytically for s > 10, using the leading-order terms in the far-field 
expansions. 

Expressions for the required mobility functions were derived from the results of 
Jeffrey & Onishi (1984). For s + 1 ,  the far-field expansions are 

68h5 32h3( 10 -9A2 + 9h4) 192h5(35 - 18A2 + 6A4) + O(s-12), 
( 1 + , ) l o  s10 

l - B  - + 
l 1  - ( l + h ) V +  (1  +h)89 

(3.29) 

60h3 60h3(8-h2) 32h3(20- 123h2+9h4) + 
(1  + h)8s8 

&,-A - - 
l 1  - ( 1 + ~ ) ~ ~ ~  ( i + h ) v  

+O(s-"), (3.30) 
64A2(175+ 1500h-426A2+ 18A4) 

(1  + h)'O s10 
+ 

4( 1 + A') 60h3 32A3( 15 - 4h') 2400h3 L =  I-- 3 +  - 
(1 + A )  s (1  + s3- (1  + s4+ (1 + s6 ( 1  +h)'s7 

192h3(5-22h2 +3A4) 1920A3(1 + A 2 )  - 256h5(70-375h- 120h2+9h3) 
(1+h)sS9 (1  + A ) l 0  s10 

+ - 
( 1  + A ) 8 S 8  

+O(s-"), (3.31) 
- 1536A3( 10 - 151A2 + 10h4) 

(1  +A)" 8 1 1  

2( 1 + h2) 68h5 32h3( 10 - 9h2 + 9A4) - - 3 
2(1 +&(i  + 4 3  ~3 ( 1  + h ) v  ( 1  +A)8s8 

M =  1 -  

+O(s-12). (3.32) 
192h5(35 - 18h2 + 6h4) 16h3(560 - 553h' + 560h4) - - 

(1 + h)'O s10 (1  +A)" sll 

These expressions are accurate to three or four significant figures for s 2 3 .  
In  order to  evaluate the far-field behaviour, it is first necessary to relate the true 

impact parameter, (i = 2y , / (a1+a2) ,  for widely separated spheres to the dimen- 
sionless horizontal separation of the two spheres, (io = 2y0/(a1 +a,), when they 
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have reached the point a t  which the numerical integration is started. To do this, (3.14) 
is integrated subject to the initial condition a =  s s i n 8  for s+co and the final 
condition uo = so sin 6, a t  the start of the numerical integration, yielding 

a = a. exp { -Iso “ M - L  Tds}. 
(3.33) 

Then, using the leading terms of (3.31) and (3.32) for s % 1 and performing the 
necessary expansions yields the desired result : 

3 - 9 5 + 32h2 ,+o(s;4)). (3.34) 
a = a o  1 -  ( 2(1+A)s, 8(1+A)2s~+16(l+A) so 

When a 9 1, the heavy sphere falls past the background sphere without coming close 
to it, and so the far-field expansions can then be used for the entire trajectory. Using 
the mean velocity as an example, and substituting (3.14) and (3.29)-(3.32) into (3.9), 
gives 

{(Bll-Ail) cos2 6+ (1-B11)}d7 

s d6 

(1 + A)4 s3+ (1  + A)5  s4 

15nA3 24A3 
4(1+A)4a3-(1+A) r~ 

- - , + 0 ( ~ - 5 ) .  (3.35) 

In arriving at  the last equation, (3.33) was expanded for c-r % 1 and used to provide 
a relationship between s and 6 along the trajectory. We also derived a similar 
expression for the far-field contributions from trajectories with a = O(1).  Equation 
(3.35) may be integrated over all trajectories with r~ 2 cmax 9 1. Referring to (3.9), 
the contribution to the mean velocity coefficient from these trajectories is 

3(2:)3 r Lrn { (Bll -All)  cos2 e+ (1  -Bll)} d7 ada 
urnax 

indicating that the influence of the neutrally buoyant spheres on the heavy sphere 
decays sufficiently rapidly with distance that the final result for the mean velocity 
converges. The far-field contributions to the hydrodynamic diffusivity decay even 
more rapidly, with the final result being 3(:&t)4r ([,((Bll-All) cos2 B+(l-B,,)}dt a d a  

27nA3 

4( 1 + A ) 5  c-rhax 

“max )” 
- +O(a;:x). (3.37) 

- 675n2 A3 - 
1024( 1 + A)* akax 

Similar far-field expressions may also be derived for the velocity variance. 
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1 
8 
- 

0.9942 
1.536 

- 1.544 
0.99968 

-0.00018 
-0.003 

0 
l..518 

- 1.536 
0.3025 

- 0.458 
0.356 
0.0108 
0.721 

-0.396 

1 
4 
- 

0.9729 
3.843 
0.3421 
0.9951 
0.0088 

-0.026 
0 
3.795 
0.323 
0.6040 

-0.679 
- 0.320 

0.0596 
1.391 
0.440 

1 

0.9272 
5.61 1 
4.404 
0.9537 
0.1514 

-0.194 
-0.3 

5.600 
4.179 
1.173 

- 1.115 
- 1.63 

0.2142 
2.274 
2.750 

1 

0.8905 
5.772 
7.070 
0.7750 
0.9306 

- 0.900 
- 2.0 

6.043 
6.327 
2.000 

- 1.800 
-4.000 

0.4021 
2.967 
5.088 

2 4 

0.7642 0.4734 
5.020 3.710 
5.604 1.894 
0.4768 0.2488 
2.277 3.610 

-2.188 -4.061 
-4.5 -6.4 

5.600 3.795 
4.179 0.323 
2.788 3.759 

-2.649 -4.224 
-5.17 -6.48 

0.4077 0.2451 
3.352 3.097 
4.777 1.918 

8 

0.2377 
2.704 

0.1250 
5.620 

-0.840 

-8.500 
-9.2 

1.518 
- 1.536 

5.658 
- 8.557 
-9.16 

0.1148 
2.602 

-0.696 

TABLE 1. Values of constants that  appear in the near-field expressions for the mobility functions 
(3.38)-(3.41) 

- 1 - I 1 - h 8 I 2 1 2 4 8 

(-1 (2.56) (2.53) (2.52) (2.44) (2.66) (-) 
k ,  2.69 2.65 2.61 2.52 2.47 2.78 4.20 

k, 1.14 x 4.44 x 2.60 x 1.97 x 4.95 x lo-' 5.24 x lo-' 3.66 x 
k,. 1.15 x 6.18 x 2.99 x 0.127 0.381 0.955 2.66 

TABLE 2. Numerical results for the dimensionless coefficients for the mean velocity disturbance, the 
horizontal and vertical velocity variance, and the hydrodynamic diffusivity. The results in 
parentheses are from Batchelor & Wen (1982). 

k, 0.023 0.085 0.341 1.33 5.16 26.0 220 

For 6 = s-2 < 1, the near-field expansions are 

MJln t-1)2 +M, In 6-l +M, 
(In 6-l)' + el In ,!!I+ e2 

M =  +O(E(ln 6-1)3. 

(3.39) 

(3.40) 

(3.41) 

The various coefficients in these expressions are functions of A ,  and are tabulated in 
table 1, using results from Jeffrey & Onishi (1984), with additional significant figures 
kindly provided by David Jeffrey (personal communication). The near-field 
expression for L is accurate to three or four significant figures for 5 < 0.015, whereas 
the near-field expressions for R,, -A, , ,  1 -Bl , ,  and M are accurate to two or three 
significant figures for 6 < 0.015, with the accuracy decreasing as h decreases. 

In carrying out the numerical integrations, the far-field expressions for the 
mobility functions were used for s > 3, whereas the near-field expressions were used 
for s < 2.015. For 2.015 < s < 2.1, the near-field results were multiplied by a 
correction factor found from interpolating the exact numerical results reported by 
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10' . . k,, 

0.1 1 .o 10.0 
Size ratio, h = a,/a, 

FIGURE 2. The dimensionless coefficients for the mean disturbance velocity (k,) and the 
hydrodynamic diffusivity (k,) of the heavy sphere as a function of the size ratio. The symbols are 
numerical results, the dashed lines are the asymptotic results for A G 1, and the dotted lines are the 
asymptotic results for A $- 1. 

Jeffrey & Onishi (1984), whereas the far-field results were multiplied by a correction 
factor found in a similar manner for 2.1 < s < 3. For A < 1,  additional exact values 
of the mobility functions were obtained from a series expansion. The final results for 
k,, k,, k,, and k, are shown in table 2. The values for k, are within a few percent of 
the results previously computed by Batchelor & Wen (1982) using the pair- 
distribution function and a volume integral approach. The numerical results are also 
shown in figures 2 and 3, together with the asymptotic results for A < 1 and A 9 1.  
The numerical values for small A are in reasonable agreement with the asymptotic 
results. However, the numerical values for the velocity variance and hydrodynamic 
diffusivity do not decrease as rapidly with decreasing A as predicted by the 
asymptotic theory. The difference is due to the near-contact contributions to  the 
numerical calculations. Additional calculations were made for which it was assumed 
that a non-hydrodynamic effect, such as surface roughness, prevents the particles 
from coming closer than some small dimensionless separation distance, 6,. Assuming 
that the transverse mobility remains at the value given by the hydrodynamic 
formula for this separation, it was found that good agreement with the asymptotic 
formulae for small A could be obtained by choosing 6, = O(10-3)-O(10-2). The open 
symbols in figures 2 and 3 are the results of these calculations for tC = lo-*. 

For large A,  the general trends predicted by the asymptotic theory are observed (k, 
proportional to  A3, k, and k, proportional to A, and k, proportional to A-I),  but even 
A = 8 is not large enough to give quantitative agreement. This is as expected, since 
the condition A3IA - 1 < 1 is not met, and so the transverse relative mobility function 
for a significant portion of each near-contact trajectory is larger than given by (3.24). 
Performing numerical calculations for larger A is not practical, because typical 
separations then become smaller than molecular distances. 
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I A 

0.1 1 .o 10.0 

Size ratio, h = a,/a, 

FIQURE 3. The dimensionless coefficients for the vertical velocity variance (k,) and the horizontal 
velocity variance (k , )  of the heavy sphere as a function of the size ratio. The symbols are numerical 
results, the dashed lines are the asymptotic results for A 6 1 ,  and the dotted lines are the 
asymptotic results for A % 1 .  

4. Comparison with falling-ball experiments 
Falling-ball rheometry is a technique used to study neutrally buoyant suspensions 

of non-colloidal particles. The common procedure is to drop a heavy sphere along the 
centreline of a cylindrical vessel containing a viscous fluid in which neutrally 
buoyant particles are suspended. An effective viscosity is calculated as the ratio of 
the Stokes velocity of the heavy sphere (corrected for wall effects) to its observed 
mean fall velocity. The average fall velocity for each experiment is determined by 
measuring the time for the heavy sphere to fall a given vertical distance. Since 
considcrable variation in this average velocity is observed, each experiment is 
repeated several times. The data are then reported as either the mean velocity or the 
effective viscosity together with its 95 Yo confidence limits, for each set of repeated 
experiments. Here, we compare this information with our predictions for the 
mean velocity and the hydrodynamic diffusivity (it is not possible to determine the 
velocity variance from the reported experiments, since only the average vertical 
velocity over a given fall distance was measured - and not the instantaneous velocity 
of the heavy sphere). 

Most falling-ball experiments have been carried out with suspensions that are 
either concentrated or contain rod-like background particles. However, Milliken et al. 
(1989) performed experiments with spheres having several size ratios and which 
included one moderately dilute concentration ( c  = 0.05). Their data, taken from the 
first row of table 2 of their paper, are given in table 3. The suspending fluid had 
viscosity p = 120 g cm-' s-l and density p = 1.18 g The neutrally buoyant 
spheres had a fixed radius of a2 = 0.159 cm. The falling balls had nominal densities 
of 8.3-8.7 g ~ m - ~ .  The information necessary to determine the indicated Stokes 
velocities, corrected for wall effects, was kindly provided by Robert Powell (personal 
communication). The uncertainties shown for the mean velocities represent the 95 % 
confidence limits, equal to uut,,,,,/n~, where uu is the standard deviation of fall 
velocities, n is the number of measurements (n = 10 for all experiments, except 
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n = 15 for h = 1.333), = 2.26 for n = 10, and to,ozs = 2.14 for n = 15. The 
diffusivity of the heavy sphere in the vertical direction due to encounters with the 
neutrally buoyant spheres is then given by 

R. H. Davis and N .  A .  Hill 

where His the fall distance (H = 10 cm for these experiments). This equation follows 
from the definition D,  = ui/2t, which is equivalent to  (2.8), together with the 
transformations u, = uh/t and t = H / (  U , )  to account for the experiments being 
performed with fixed fall distances rather than fixed fall times. 

The experimental values of the mean velocity and the hydrodynamic diffusivity 
are compared with theoretical predictions in table 3. Using the definitions (3.2) and 
(3.4), the dimensionless coefficients for the mean velocity (k,) and hydrodynamic 
diffusivity (kd) were also determined and are listed in table 3. The predicted mean 
velocities are in good agreement with the measurements, and the coefficient for the 
mean velocity is relatively insensitive to the size ratio over the range studied. The 
predicted hydrodynamic diffusivi ties are comparable to the measured diffusivities 
for size ratios near unity, but are higher than the measurements by a factor of five 
for h = 0.2 and h = 0.33, and by a factor of ten for h = 2. Unfortunately, the number 
of repeated measurements is too small to rule out uncertainty in the standard 
deviations as a major source of the disagreement in the diffusivities. Another possible 
explanation for the discrepancy for small h is that the correlation times were reduced 
because the large falling sphere a t  c = 0.05 and h < 1 had several background 
spheres, rather than a single one, a t  a given time within a distance comparable to its 
own radius. The suspension would need to be more dilute for only pairwise 
encounters to dominate the diffusivity. In  addition, small surface roughness or other 
effects may have prevented close contact and thus reduced the diffusivity . Surface 
roughness may also have reduced the diffusivity for h = 2, but not by the factor of 
ten observed. The Brownian diffusivities of the falling ball are also listed in table 3, 
and these are clearly negligible. 

5. Concluding remarks 
The mean velocity, velocity variance, and hydrodynamic diffusivity have been 

predicted for a heavy sphere falling under creeping flow conditions through a dilute 
suspension of neutrally buoyant spheres. The pairwise additivity theory for the mean 
velocity and the velocity variance requires that the typical separation distance of the 
background spheres be large compared to their radius, implying that c < 1. The 
theory for the hydrodynamic diffusivity has the additional requirement that the 
typical separation of the background spheres is large compared to  the radius of the 
heavy sphere, so that the heavy sphere encounters only one background sphere a t  a 
time. Thus, both c 4 1 and c < h3 must be satisfied. Further progress for non-dilute 
suspensions may be made in the future by numerical simulations (Mondy, Ingber & 
Dingman 1991). 

The results for the mean velocity are in good agreement with the earlier theory of 
Batchelor & Wen (1988). The new results for the velocity variance and hydrodynamic 
diffusivity describe the fluctuations in the settling velocity of the heavy sphere as it 
undergoes close encounters with the background spheres. These velocity fluctuations 
are correlated over timescales comparable to the duration of an encounter, provided 
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that the suspension is sufficiently dilute. For dilute suspensions, the mean velocity 
disturbance, the velocity variance, and the hydrodynamic diffusivity of the heavy 
sphere are all proportional to the concentration of background spheres, owing to the 
pairwise nature of the interactions. This is in contrast to the expected behaviour for 
monodisperse suspensions, in which two interacting spheres sediment at  the same 
velocity and must encounter a third particle for their motion to become uncorrelated. 
In fact, Koch & Shaqfeh (1991) predict that long-range hydrodynamic interactions 
cause the hydrodynamic diffusivity to increase with decreasing concentration. 
Experiments with nearly monodisperse suspensions by Davis & Hassen (1988) and 
Ham & Homsy (1988) gave hydrodynamic diffusivities of O(aU,) which increase with 
increasing concentration for dilute suspensions, reach a maximum at a concentration 
of only a few percent by volume, and then decrease with further concentration 
increases. It may be that the initial increase at  low concentrations is due to a change 
in mechanism from pairs separating due to the small differences in particle sizes to 
pairs separating because of encountering a third particle. When all the particles are 
settling, there is a large contribution to the hydrodynamic diffusivity from long- 
range interactions that are not present when only one sphere is settling and the rest 
are neutrally buoyant. For comparison, the available results for h = 1 and c = 0.05 
give a diffusivity of approximately 5aQ for the former case and only 0.05aQ for the 
latter. 

The mean velocity is shown to be nearly independent of the size ratio of the 
neutrally buoyant spheres to the heavy sphere, provided that this ratio is less than 
about four. For larger size ratios, the mean velocity of the heavy sphere is predicted 
to decrease, primarily because lubrication forces cause it to maintain near contact 
with a neutrally buoyant sphere for a long duration. These short-range hydro- 
dynamic forces were not included in the recent theory by Brenner et al. (1990), and 
so they predicted that the effective viscosity would be independent of the size ratio. 
Falling-ball rheometry experiments for c = 0.05 confirm this prediction for small and 
moderate size ratios. Unfortunately, data for dilute suspensions of neutrally buoyant 
spheres that are much larger than the falling ball are not available in the literature. 
For highly concentrated suspensions (c  2 0.5), however, Milliken et al. (1989) have 
observed that the mean velocity increases (effective viscosity decreases) as the size 
ratio increases. This is thought to be due to the ability of a small heavy sphere to pass 
more easily through the spaces between the neutrally buoyant spheres, a mechanism 
that is not important for dilute suspensions. 

The hydrodynamic diffusivity coefficient is shown to increase dramatically with 
increasing size ratio of the neutrally buoyant spheres to the falling sphere, 
approximately as the cube of this ratio. As a result, the dimensional hydrodynamic 
diffusivity of the falling sphere depends strongly on the size of the neutrally buoyant 
spheres, but only weakly on its own size. These trends are confirmed by the falling- 
ball rheometry data for small and moderate size ratios. For large size ratios, the 
behaviour is dominated by lubrication forces which cause the near-contact 
interactions to have long correlation times. The results are very sensitive to the 
magnitude of the transverse relative mobility function. Since this function depends 
strongly on the small distance separating the two interacting spheres, it is 
anticipated that small surface roughness elements, or weak Brownian or repulsive 
forces, may cause significant changes in the final results. In  order that the Brownian 
motion of the falling sphere is small compared to its hydrodynamic diffusion, the 
requirement DJD, = k, a, U,  c /D,  $- 1 must be met, where D, = kT/6npa, for dilute 
suspensions, V ,  = 2at (p1-pIg/9p, k = 1.381 x erg K-' is the Boltzmann con- 
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stant, I' is the absolute temperature, and g is the gravitational acceleration. For 
typical suspensions (5" = 300 K,  g = 981 cm s-*, IpI-pI = 0.01 g ~ m - ~ ,  c = O . O l ) ,  the 
results of the present work may be used to show that the Brownian diffusivity of the 
heavy particle is smaller than the vertical component of the hydrodynamic 
diffusivity when its radius and the radius of the neutrally buoyant spheres both 
exceed 3.5pm. This bound will be rcduced if the volume fraction of background 
spheres or the density difference between the heavy sphere and the fluid is increased. 
Of course, the present theory does not provide a non-zero valuc for the horizontal 
component of the hydrodynamic diffusivity, as this requires higher-order interactions 
between three or more particles or the presence of effects such as surface roughness, 
repulsion, or inertia which would break the symmetry of the relative trajectories. 
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